A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death.

نویسندگان

  • Baptiste Vergnes
  • Benjamin Gourbal
  • Isabelle Girard
  • Shyam Sundar
  • Jolyne Drummelsmith
  • Marc Ouellette
چکیده

The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials (Sb(V)), but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory isolates, but our understanding of resistance in field isolates is lagging behind. We describe here a comparative analysis of a genetically related pair of Sb(V)-sensitive and -resistant Leishmania donovani strains isolated from kala-azar patients. The resistant isolate exhibited cross-resistance to other unrelated Leishmania drugs including miltefosine and amphotericin B. A comparative proteomics screen has highlighted a number of proteins differentially expressed suggesting that programmed cell death (PCD) is modified in the resistant parasite. Indeed drug-induced PCD progression was altered in the Sb(V)-resistant strain as determined using early and late markers of apoptosis. Two proteins, the heat shock protein HSP83 and the small kinetoplastid calpain-related protein (SKCRP14.1) were shown to be intimately implicated in the drug-induced PCD phenotype. HSP83 increased drug resistance and reduced drug-mediated PCD activation by interfering with the mitochondrial membrane potential, whereas SKCRP14.1 promoted antimonial-induced PCD but protected against miltefosine-induced PCD. This study highlights the important role of PCD in drug susceptibility/resistance in the protozoan parasite Leishmania.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proteomic screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death

A Proteomic screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Running title: Programmed cell death and drug resistance in Leishmania

متن کامل

Frequency of PGP and MRPA efflux pump genes in drug resistance in clinical isolates of Leishmania tropica and L. major

This study aimed to identify PGP and MRPA genes in clinical isolates of Leishmania. The genes of pgpa (MRPA) and mdr1 (PGP) are involved in the drug resistance, their products act as dependent transporters of ATP (ABC Transporter) in the reflux of drugs from the cytosol to the outer space of the cell. Hence, 40 volunteers with leishmaniasis were randomly selected. Firstly, Amastigotes were exam...

متن کامل

Drug resistance mechanisms in clinical isolates of Leishmania donovani.

Leishmania are protozoan parasites distributed worldwide. About 1.5-2.0 million cases are reported in the world annually from this disease and the death toll is estimated to be 57,000. Along with Brazil, Sudan and Bangladesh, India contributes to 90 per cent of the global burden of visceral leishmaniasis (VL). The absence of effective vaccines and vector control programmes, makes chemotherapy t...

متن کامل

Identification of Agents with Potential Leishmania Malate Dehydrogenase Inhibitor Activity: A Proteomic and Molecular Docking Approach

 Background and purpose: Leishmaniasis is one of the most important infectious diseases caused by different species of the Leishmania, which is a public health problem worldwide. So far, no effective vaccine is introduced for this disease and drug therapy is associated with many side effects. Therefore, this study was designed to identify novel FDA-approved compounds with anti-leishmanial activ...

متن کامل

Topoisomerase I gene mutations at F270 in the large subunit and N184 in the small subunit contribute to the resistance mechanism of the unicellular parasite Leishmania donovani towards 3,3'-diindolylmethane.

3,3'-Diindolylmethane (DIM), a novel poison targeting Leishmania donovani topoisomerase I (LdTOP1LS), induces programmed cell death in Leishmania parasites. The development of resistant parasites by adaptation with increasing concentrations of DIM generates random mutations in LdTOP1LS. Single-nucleotide mutations result in the amino acid substitutions F270L and K430N in the large subunit and N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2007